Monotone dependence in graphical models for multivariate Markov chains
نویسندگان
چکیده
We show that a deeper insight into the relations among marginal processes of a multivariate Markov chain can be gained by testing hypotheses of Granger noncausality, contemporaneous independence and monotone dependence. Granger noncausality and contemporaneous independence conditions are read off a mixed graph, and the dependence of an univariate component of the chain on its parents—according to the graph terminology—is described in terms of stochastic dominance criteria. The examined hypotheses are proven to be equivalent to equality and inequality constraints on some parameters of a multivariate logistic model for the transition probabilities. The introduced hypotheses are tested on real categorical time series.
منابع مشابه
Continuous dependence on coefficients for stochastic evolution equations with multiplicative Levy Noise and monotone nonlinearity
Semilinear stochastic evolution equations with multiplicative L'evy noise are considered. The drift term is assumed to be monotone nonlinear and with linear growth. Unlike other similar works, we do not impose coercivity conditions on coefficients. We establish the continuous dependence of the mild solution with respect to initial conditions and also on coefficients. As corollaries of ...
متن کاملEvaluation of First and Second Markov Chains Sensitivity and Specificity as Statistical Approach for Prediction of Sequences of Genes in Virus Double Strand DNA Genomes
Growing amount of information on biological sequences has made application of statistical approaches necessary for modeling and estimation of their functions. In this paper, sensitivity and specificity of the first and second Markov chains for prediction of genes was evaluated using the complete double stranded DNA virus. There were two approaches for prediction of each Markov Model parameter,...
متن کاملGraphical Modelling of Multivariate Time Series
We introduce graphical time series models for the analysis of dynamic relationships among variables in multivariate time series. The modelling approach is based on the notion of strong Granger causality and can be applied to time series with non-linear dependencies. The models are derived from ordinary time series models by imposing constraints that are encoded by mixed graphs. In these graphs,...
متن کاملMarkov properties for graphical time series models
This paper deals with the Markov properties of a new class of graphical time series models which focus on the dynamic interrelationships between the components of multivariate time series. The modelling approach is based on the concept of strong Granger-causality and thus can also be applied to nonlinear models. The constraints defining the models are encoded by mixed graphs in which each compo...
متن کاملGraphical Markov Models
Graphical Markov models are multivariate statistical models which are currently under vigorous development and which combine two simple but most powerful notions, generating processes in single and joint response variables and conditional independences captured by graphs. The development of graphical Markov started with work by Wermuth (1976, 1980) and Darroch, Lauritzen and Speed (1980) which ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013